A new series of rigid rod protected and terminal dialkynes with extended p-conjugation through aromatic and hetero-aromatic linker units in the backbone, 2,5-bis(trimethylsilylethynyl)-1-(2-ethylhexyloxy)-4-methoxybenzene 1a, 2,5-bis(ethynyl)-1-(2-ethylhexyloxy)-4-methoxybenzene 1b, 5,8-bis(trimethylsilylethynyl)quinoline 2a, 5,8-bis(ethynyl)quinoline 2b, 2,3-diphenyl-5,8-bis(trimethylsilylethynyl)quinoxaline 3a, 2,3-diphenyl-5,8-bis(ethynyl)quinoxaline 3b, 4,7-bis(trimethysilylethynyl)-2,1,3-benzothiadiazole 4a and 4,7-bis(ethynyl)-2,1,3-benzothiadiazole 4b, has been synthesised. Treatment of the complex trans-[Pt(Ph)(Cl)(Et3P)2] with half an equivalent of the diterminal alkynes 1b–4b in iPr2NH–CH2Cl2, in the presence of CuI, at room temperature, afforded the platinum(II) di-yne complexes trans-[(Et3P)2(Ph)Pt–C ≡ C–R–C ≡ C–Pt(Ph)(Et3P)2] [R = 1-(2-ethylhexyloxy)-4-methoxybenzene-2,5-diyl 1c, quninoline-5,8-diyl 2c, 2,3-diphenylquinoxaline-5,8-diyl 3c, 2,1,3-benzothiadiazole-4,7-diyl 4c] in good yields. The new acetylide-functionalised ligands and the platinum(II) s-acetylide complexes have been characterised by analytical and spectroscopic methods and X-ray single crystal structure determinations for 2c–4c. The absorption spectra of the complexes 2c–4c show substantial donor–acceptor interaction between the platinum(II) centres and the conjugated ligands. The photoluminescence spectra of 1c–3c show characteristic singlet (S1) and triplet (T1) emissions. Both the singlet and triplet emissions as well as the absorption decrease in energy with increasing electronegativity of the spacer groups along the series 1c–4c.
-
Research News